

DATASHEET

8 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER EL827 Series

Features:

- Current transfer ratio
(CTR: $50 \sim 600 \%$ at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$)
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact small outline package
- Pb free and RoHS compliant.
- UL approved (No. E214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved
- CQC approved

Description

The EL827series devices each of consist of an infrared emitting diodes, optically coupled to a phototransistor detector. They are packaged in a 8-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Programmable controllers
- System appliances, measuring instruments
- Telecommunication equipments
- Home appliances, such as fan heaters, etc.
- Signal transmission between circuits of different potentials and impedances

Absolute Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right.$)

	Parameter	Symbol	Rating	Unit
Input	Forward current	I_{F}	60	mA
	Peak forward current (1us, pulse)	$\mathrm{I}_{\text {FP }}$	1	A
	Reverse voltage	V_{R}	6	V
	Power dissipation	P_{D}	100	mW
Output	Power dissipation	PC_{C}	150	mW
	Collector current	I_{C}	50	mA
	Collector-Emitter voltage	$\mathrm{V}_{\text {CEO }}$	80	V
	Emitter-Collector voltage	$V_{\text {ECO }}$	7	V
Total power dissipation		$\mathrm{P}_{\text {TOT }}$	200	mW
Isolation voltage ${ }^{* 1}$		VIso	5000	V rms
Operating temperature		TopR	-55 to 110	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {STG }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Soldering temperature *2		TSOL	260	${ }^{\circ} \mathrm{C}$

Notes:
*1 AC for 1 minute, R.H. $=40 \sim 60 \%$ R.H. In this test, pins $1,2 \& 3,4$ are shorted together, and pins 5, $6 \& 7,8$ are shorted together.

[^0]Electro-Optical Characteristics ($\mathbf{~} \mathrm{a}=25^{\circ} \mathrm{C}$ unless specified otherwise)
Input

Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Forward Voltage	V_{F}	-	1.2	1.4	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Current	I_{R}	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}$
Input capacitance	C_{in}	-	30	250	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{kHz}$

Output

| Parameter | Symbol | Min. | Typ.* | Max. | Unit | Condition |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Collector-Emitter dark
 current | $\mathrm{I}_{\text {CEO }}$ | - | - | 100 | nA | $\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ |
| Collector-Emitter
 breakdown voltage | BV CEO | | | | | |

Transfer Characteristics

Parameter	Symbol	Min	Typ.	Max.	Unit	Condition
Current Transfer ratio	CTR	50	-	600	$\%$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
Collector-Emitter saturation voltage	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.1	0.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
Isolation resistance	R_{IO}	5×10^{10}	-	-	Ω	$\mathrm{V}_{\mathrm{IO}}=500 \mathrm{Vdc}$, $40 \sim 60 \% \mathrm{R} . \mathrm{H}$.
Floating capacitance	C_{IO}	-	0.6	1.0	pF	$\mathrm{V}_{\mathrm{IO}}=0, \mathrm{f}=1 \mathrm{MHz}$
Cut-off frequency	fc	-	80	-	kHz	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ $\mathrm{R}_{\mathrm{L}}=100 \Omega,-3 \mathrm{~dB}$
Rise time	t_{r}	-	3	18	$\mu \mathrm{~s}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$, $\mathrm{R}_{\mathrm{L}}=100 \Omega$
Fall time	t_{f}	-	4	18	$\mu \mathrm{~s}$	

[^1]
Typical Electro-Optical Characteristics Curves

Figure 3. Normalized Current Transfer Ratio vs

Figure 5. Collector Current vs

Figure 2. Normalized Collector Current vs Forward Current

Figure 4. Normalized Collector Current vs

Figure 7. Collector Dark Current

Figure 9. Collector-Emitter Saturation Voltage

Figure 8. Switching Time vs Load Resistance

Figure 10. Switching Time Test Circuit \& Waveforms

Order Information

Part Number

EL827X(Z)-V

Note

X = Lead form option (S, S1, M or none)
Z = Tape and reel option (TA, TB or none)
V = VDE safety (optional)

Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
M	Wide lead bend (0.4 inch spacing)	45 units per tube
S (TA)	Surface mount lead form + TA tape \& reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape \& reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape \& reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape \& reel option	1000 units per reel

Package Dimension (Dimensions in mm)

Standard DIP Type

Option M Type

Option S Type

Option S1 Type

Recommended pad layout for surface mount leadform

Device Marking

Notes

EL827 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

Tape \& Reel Packing Specifications

Tape dimensions

Dimension No.	A	B	Do	D1	E	F
Dimension(mm)	10.4 ± 0.1	10.0 ± 0.1	1.5 ± 0.1	$1.5+0.25$ -0.1	1.75 ± 0.1	7.5 ± 0.1
Dimension No.	Po	P1	P2	\mathbf{t}	\mathbf{W}	K
Dimension(mm)	4.0 ± 0.1	12.0 ± 0.1	2.0 ± 0.1	0.4 ± 0.1	16.0 ± 0.3	4.5 ± 0.1

Precautions for Use

1. Soldering Condition
1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Preheat

Temperature min ($\mathrm{T}_{\text {smin }}$)
Temperature max ($\mathrm{T}_{\text {smax }}$)
Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$) (t_{s})
Average ramp-up rate ($\mathrm{T}_{\text {smax }}$ to T_{p})

Other

Liquidus Temperature (T_{L})
Time above Liquidus Temperature (t_{L})
Peak Temperature (T_{P})
Time within $5^{\circ} \mathrm{C}$ of Actual Peak Temperature: $\mathrm{T}_{\mathrm{P}}-5^{\circ} \mathrm{C}$
Ramp- Down Rate from Peak Temperature
Time $25^{\circ} \mathrm{C}$ to peak temperature
Reflow times

Note:
Reference: IPC/JEDEC J-STD-020D
$150^{\circ} \mathrm{C}$
$200^{\circ} \mathrm{C}$
60-120 seconds
$3^{\circ} \mathrm{C} /$ second max
$217{ }^{\circ} \mathrm{C}$
60-100 sec
$260^{\circ} \mathrm{C}$
30 s
$6^{\circ} \mathrm{C} /$ second max.
8 minutes max.
3 times

DISCLAIMER

1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.

[^0]: *2 For 10 seconds

[^1]: * Typical values at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

